接上篇:
donkeyCar 校准舵机和油门
完成校准后,驴车已经可以动起来;
1. 开启软件端:
cd ~/projects/mycar/
python manage.py drive --js
如果不想每次都加 "--js", 可以修改 myconfig.py;
USE_JOYSTICK_AS_DEFAULT = True
2. 配对遥控器
按下 Home 键配对;
3. 采集数据
Make sure you collect good data.
1.Practice driving around the track a couple times.
2.When you're confident you can drive 10 laps without mistake, restart the python mange.py process to create a new tub session.
Press Start Recording if using web controller.
The joystick will auto record with any non-zero throttle.
3.If you crash or run off the track press Stop Car immediately to stop recording. If you are using a joystick tap the Triangle button to erase the last 5 seconds of records.
4.After you've collected 10-20 laps of good data (5-20k images) you can stop your car with Ctrl-c in the ssh session for your car.
5.The data you've collected is in the data folder in the most recent tub folder.
以上是官方对采集数据的描述;实际操作中有如下经验:
(1)浏览器打开页面:<your car's hostname.local>:8887;
用浏览器以第一视角观测驴车在赛道上运行,用遥控器操控,能更好控制驴车;
(2)采集时,将油门值设置小一些,车运行慢一点,更便于采集;训练完后,用模型跑时,再改回去;
采集的数据默认自动存放在当前路径的 data 目录,包括图片和 json 文件;
4. 驴车上训练模型
采集数圈后(一般至少要采集 5000 张图以上),在驴车训练(实际上树莓派速度会很慢,训练还是放到 PC 用显卡做,这里只是演示调试过程);
donkey train --tub <tub folder names comma separated> --model ./models/mypilot.h5
这里采集了七千多张图,用树莓派默认参数训练了将近两个半小时,效果如下;
5. 用模型自动驾驶
(1)运行脚本:
python manage.py drive --model ~/mycar/models/mypilot.h5 --js
(2)配对遥控器,待模型加载完成后,按第一次 A 键,驴车进入自动驾驶模式;
再按一次 A 键,驴车开始按模型运行;
再按一次 A 键,驴车停止;
如此反复;
采集第一遍训练的结果,驴车走着走着就失控了,可以说冠以 人工智障 称号,确切无疑,哈哈.
至此,驴车自动驾驶环境搭建过程全部完毕,接下来着手调试算法效果;